\(\int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx\) [507]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 323 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=-\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a \left (16 a^2+59 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}+\frac {5 b \left (4 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

[Out]

-1/24*(16*a^2+33*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/
(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+1/24*a*(16*a^2+59*b^2)*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^
(1/2)/d/(a+b*cos(d*x+c))^(1/2)+5/8*b*(4*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(si
n(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+1/24*(16*a
^2+33*b^2)*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d+13/12*a*b*sec(d*x+c)*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d+1/3*a^
2*sec(d*x+c)^2*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 1.35 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {2871, 3134, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\frac {\left (16 a^2+33 b^2\right ) \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{24 d}+\frac {a \left (16 a^2+59 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}-\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {5 b \left (4 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {a^2 \tan (c+d x) \sec ^2(c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}+\frac {13 a b \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{12 d} \]

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^4,x]

[Out]

-1/24*((16*a^2 + 33*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c
+ d*x])/(a + b)]) + (a*(16*a^2 + 59*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a +
b)])/(24*d*Sqrt[a + b*Cos[c + d*x]]) + (5*b*(4*a^2 + b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c
+ d*x)/2, (2*b)/(a + b)])/(8*d*Sqrt[a + b*Cos[c + d*x]]) + ((16*a^2 + 33*b^2)*Sqrt[a + b*Cos[c + d*x]]*Tan[c +
 d*x])/(24*d) + (13*a*b*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(12*d) + (a^2*Sqrt[a + b*Cos[c + d
*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2871

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/
(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e
 + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 +
c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 +
d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int \frac {\left (\frac {13 a^2 b}{2}+a \left (2 a^2+9 b^2\right ) \cos (c+d x)+\frac {3}{2} b \left (a^2+2 b^2\right ) \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\int \frac {\left (\frac {1}{4} a^2 \left (16 a^2+33 b^2\right )+\frac {1}{2} a b \left (19 a^2+12 b^2\right ) \cos (c+d x)+\frac {13}{4} a^2 b^2 \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{6 a} \\ & = \frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\int \frac {\left (\frac {15}{8} a^2 b \left (4 a^2+b^2\right )+\frac {13}{4} a^3 b^2 \cos (c+d x)-\frac {1}{8} a^2 b \left (16 a^2+33 b^2\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\int \frac {\left (-\frac {15}{8} a^2 b^2 \left (4 a^2+b^2\right )-\frac {1}{8} a^3 b \left (16 a^2+59 b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{6 a^2 b}+\frac {1}{48} \left (-16 a^2-33 b^2\right ) \int \sqrt {a+b \cos (c+d x)} \, dx \\ & = \frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{16} \left (5 b \left (4 a^2+b^2\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{48} \left (a \left (16 a^2+59 b^2\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left (\left (-16 a^2-33 b^2\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{48 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\left (5 b \left (4 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{16 \sqrt {a+b \cos (c+d x)}}+\frac {\left (a \left (16 a^2+59 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{48 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a \left (16 a^2+59 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}+\frac {5 b \left (4 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (16 a^2+33 b^2\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {13 a b \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.67 (sec) , antiderivative size = 434, normalized size of antiderivative = 1.34 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\frac {\frac {104 a b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (104 a^2-3 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i \left (16 a^2+33 b^2\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {-\frac {b (1+\cos (c+d x))}{a-b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \left (26 a b \sin (c+d x)+\left (8 a^2+\frac {33 b^2}{2}\right ) \sin (2 (c+d x))+8 a^2 \tan (c+d x)\right )}{96 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^4,x]

[Out]

((104*a*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]]
 + (2*b*(104*a^2 - 3*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a
 + b*Cos[c + d*x]] - ((2*I)*(16*a^2 + 33*b^2)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Cos[c +
d*x]))/(a - b))]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]],
 (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)
] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*
Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^2*(26*a*b*Sin[c + d*x] + (8*a^2 + (33*b^2)/2)*S
in[2*(c + d*x)] + 8*a^2*Tan[c + d*x]))/(96*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1741\) vs. \(2(380)=760\).

Time = 103.95 (sec) , antiderivative size = 1742, normalized size of antiderivative = 5.39

method result size
default \(\text {Expression too large to display}\) \(1742\)

[In]

int((a+cos(d*x+c)*b)^(5/2)*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

-1/24*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((256*a^2*b+528*b^3)*cos(1/2*d*x+1/2*c)*sin(
1/2*d*x+1/2*c)^8+(-128*a^3-384*a^2*b-472*a*b^2-792*b^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(128*a^3+328*a
^2*b+472*a*b^2+396*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-48*a^3-100*a^2*b-118*a*b^2-66*b^3)*sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+8*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(60*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2*b+15*b^3*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b
/(a-b))^(1/2))-16*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-59*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(
a-b))^(1/2))*a*b^2+16*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-16*EllipticE(cos(1/2*d*x+1/2*c),(-2
*b/(a-b))^(1/2))*a^2*b+33*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-33*EllipticE(cos(1/2*d*x+1/2*
c),(-2*b/(a-b))^(1/2))*b^3)*sin(1/2*d*x+1/2*c)^6-12*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(60*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2*b+15*b^3*EllipticPi(cos(1/2
*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-16*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-59*EllipticF(cos(1/2
*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2+16*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-16*EllipticE(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+33*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-33*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3)*sin(1/2*d*x+1/2*c)^4+6*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(
a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(60*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2*b+15*b^3*
EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-16*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-59
*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2+16*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^
3-16*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+33*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)
)*a*b^2-33*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3)*sin(1/2*d*x+1/2*c)^2-60*a^2*b*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))
^(1/2))-15*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos
(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))+16*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(
a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+59*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(
a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-16*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^
(1/2))*a^3+16*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1
/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b-33*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)
/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2+33*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-
b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3)/(2*cos(1/2*d*
x+1/2*c)^2-1)^3/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*
d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(5/2)*sec(d*x+c)**4,x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{4} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^4, x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{4} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^4, x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^4(c+d x) \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

[In]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^4,x)

[Out]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^4, x)